List of the publications of
Assoc. prof. Dr. Robert Kazandjiev

1. M. Mitov, R. Kazandjiev,
 Analysis of Rheology Behaviour of a Hard Polymer Subjected;
 to Creep in Torsion;

2. A. Baltov, N. Boncheva, R. Kazandjiev, Iv. Radovanov; St. Vodenicharov,
 On the Theoretical and Experimental Description of the Mechanical Behaviour of Metals
 during Metal Forming Proc.;
 Proc. IUTAM Symp. Tutzing, Springer Verlag, 1979, pp 14 - 26;

3. R. Kazandjiev,
 Specification of an appropriate cooling regime of a steel sheet roll;
 (Bulgarian)

4. A. Baltov, N. Boncheva, R. Kazandjiev, Iv. Radovanov, St. Vodenicharov,
 A method of microstress study of plastic materials sensitive to strain rate;

5. O. Minchev, R. Kazandjiev,
 Optimal Design of Plates and Shells when Accounting for Material Damage,

6. O. Minchev, R. Kazandjiev,
 Damage Development and Effects on Loaded Structure Elements,

7. A. Baltov, V. Balavessov, I. Russev, P. Kulev, R. Kazandjiev,
 Identification of the Rheology Parameters of Rubber by Using Digital Speckle Pattern

8. P. Gospodinov, R. Kazandjiev, M. Mironova,
 The Effect of Sulphate Ions Diffusion on the Structure of Cement Stone,

9. A. Baltov, R. Kazandjiev et al.,
 Laboratory book on solid mechanics, vol. 1,
9.1. **R. Kazandjieva**, E. Lomakin,
Diagram $\sigma - \varepsilon$ under tension/compression accounting for material deformation anisotropy,
pp 44 – 51.

9.2. **R. Kazandjieva**, E. Lomakin,
Diagrams of pure shear in the symmetry plane of a specimen of an anisotropic material (torsion of a thin walled tube),
pp 52 – 59.

9.3. **R. Kazandjieva**, A. Baltov, N. Malinin,
Diagram of uniaxial tension drawn after testing a polymer material. Theory of Boltzmann-Voltera,
pp 71 – 78.

9.4. **R. Kazandjieva**, R. Zvyagin,
Longitudinal impact between two elastic rods,
pp 172 – 179.

9.5. **R. Kazandjieva**, B. Malishev,
Propagation of elasto-plastic waves in steel rods,
pp 180 – 192.

9.6. **R. Kazandjieva**, L. Mirkin,
Dislocations and plasticity of crystal bodies,
pp 193 – 201.

10. A. Baltov, **R. Kazandjieva** et al,
Laboratory book on solid mechanics, vol. 2,
Joint edition of Sofia University “St. Kl. Ohridski” and Moscow State University “V. Lomonosov”, 1989 (Bulgarian),

10.1. **R. Kazandjieva**, A. Baltov, R. Vasin, M. Mitov,
Elasto-plastic deformation of metals undergoing complex loading,
pp 10 - 18.

10.2. **R. Kazandjieva**, A. Baltov, R. Vasin, M. Mitov,
Elasto-plastic deformation of metals under complex stressed and strained state,
pp 19 - 29.
10.3. **R. Kazandjiev**, A. Lokoshchenko, S. Shesterikov,
Creep of metals under complex stressed state,
pp 64 - 73.

10.4. **R. Kazandjiev**, M. Mihovski, M. Djallalova,
Impact between two solid bodies,
pp 171 - 180.

10.5. **R. Kazandjiev**, M. Mihovski, N. Veklich,
Low frequency bending oscillations of circular elastic membranes,
pp 181 – 189.

11. A. Baltov, **R. Kazandjiev** et al,
Laboratory book on solid mechanics, vol. 3,
Joint edition of Sofia University “St. Kl. Ohridski” and Moscow State University “V. Lomonosov”, 1991 (Bulgarian),

11.1. **R. Kazandjiev**, A. Zvyagin,
Direct experimental method of obtaining the diagrams of shock loading of ground layers,
pp 41 – 47.

11.2. I. Russev, **R. Kazandjiev**, V. Netrebko,
Nondestructive testing of solids via holographic interferometry,
pp 62 – 72.

11.3. I. Mihovski, **R. Kazandjiev**,
Determination of the limit of metal crack resistance,

11.4. **R. Kazandjiev**, I. Mihovski, I. Kershtein,
Study of crack propagation in plastics under fatigue,
pp 139 – 156.

12. P. Gospodinov, **R. Kazandjiev**, M. Mironova,

13. **R. Kazandjiev**, P. Gospodinov, T. Partalin, M. Mironova
Acoustical Study of Sulphate Ion Penetration into Cement Stone,

14. M. Mironova, P. Gospodinov, **R. Kazandjiev**, T. Partalin,
Estimation of the Depth of Sulfate Ion Penetration into Cement Stone,
Proc. 3d Int. Symp. on Textile Comp. in Building Mater., Seoul, Korea, 1996, pp 137 - 144;

15. N. Sirakov, **R. Kazandjiev**,
3D Representation of Flaws in Natural Resources and Materials,

16 P. Gospodinov, **R. Kazandjiev**, T. Partalin, M. Mironova,
Strength Changes Occurring in Cement Stone Under Sulfate Attack,

17. P.Gospodinov, **R.Kazandjiev**, T.Partalin, M. Mironova,
Diffusion of Sulfate Ions into Cement Stone Regarding Simultaneous Chemical Reactions and Resulting Effects,
Cement and Concrete Research, Elsevier Sc., 29 (1999), pp 1591-1596

18. M. Mironova, P.Gospodinov, **R. Kazandjiev**, T. Partalin,
Assessment of Sulfate Corrosion Influence on Cement Composite Structure and Mechanical Behaviour,

20. M. Mironova, P. Gospodinov, **R. Kazandjiev**
The Effect of Liquid Push Out of the Material Capillaries under Sulfate Ion Diffusion in Cement Composites,

21. **R. Kazandjiev**, P. Gospodinov, M. Mironova;
Cement Stone Behaviour under Sulfate Attack,

22. **R. Kazandjiev**, P. Gospodinov, M. Mironova, N. Sirakov,
Crack Development in Sulfate-Corroded Cement Stone,
23. R. Kazandjie, M. Mironova, P. Gospodinov, Corrosion of Cement stone Caused by Sulfate Ion Diffusion,

24. R. Kazandjie, P. Gospodinov, M. Mironova, Outlines of the Durability of Cement Stone under Sulfate Attack,

25. R. Kazandjie, Assessment of Metal Damage Gained During Hot Plastic Forming,

26. R. Kazandjie, P. Gospodinov, M. Mironova, Sulfate-Induced Degradation of Cement Stone,

27. M. Mironova, P. Gospodinov, R. Kazandjie, Some structure and strength changes of cement based composites under sulphate aggression,

28. R. Kazandjie, P. Gospodinov, M. Mironova, V. Vladimirov, Al. Alexiev. Ultrasonic assessment of the cement stone elasticity modulus under sulfate attack of various intensity,

29. P. Gospodinov, M. Mironova, R. Kazandjie, Mechanisms of Sulfate Ionic Diffusion in Porous Mineral Composites,

30. R. Kazandjie, P. Gospodinov, M. Mironova, Assessment of the Mechanical Characteristics of Cement Stone Subjected to sulfate Attack of various Intensity,

31. Mironova M., P. Gospodinov, R. Kazandjie, Diffusion Conductivity of Cement-Based Composites,

DISSERTATION RELATED PUBLICATIONS

Topic “Analytical assessment of material damage gained during hot rolling of metal sheets”

Π 6. **R. Kazandjiev**,

П7. R. Kazandjiev;

П8. R. F. Kazandjiev, N. M. Sirakov

Delivered reports
1. P. Gospodinov, R. Kazandjiev, M. Mironova,
Porosity Changes and Damage Effects Caused by the Penetration of Sulphate Ions into Cement Stone,
Section “.Applied Mechanics”, Session 5.4.,1993

2. R. Kazandjiev
Damage Assessment During Metal Rolling Using Fracture Maps Obtained at High Rates of Strain,
Report delivered at the 8th Nat. Congr. on Theoret. and Appl. Mechanics, Sofia, 1997,

3. Mironova, Gospodinov, Kazandjiev
Assessment of the Complex Structure of Cement Stone Undergoing Sulfate Attack,

