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Abstract. This paper evaluates the nonlinear responses of a function-
ally graded (FG) beam resting on a nonlinear foundation. After derivation
of fundamental nonlinear differential equation using the Euler-Bernouli
beam theory, a semi analytical method has been used to study the re-
sponse of the problem. The responses can be evaluated for both linear
and nonlinear isotropic and FG beams individually. Adomians Decompo-
sition and successive approximation methods have been used for solution
of nonlinear differential equation. As numerical investigation, the beams
with simply supported ends and linear and nonlinear foundations have
been analyzed using this method.
Key words: Functionally graded beam, nonlinear response, nonlinear
foundation, Adomians Decomposition Method (ADM).

1. Introduction

Beams are one of the most applicable structures in the scope of mechan-
ical engineering and analysis of the structures. There are two main theories to
analyze the beam under specific loads. Euler Bernoulli and Timoshenko theo-
ries are two mentioned. The first is applicable for beam with short width and
consequently only bending deformation is considered. In contrast, second the-
ory is applicable for wide beam. In this paper, linear and nonlinear responses
of a beam resting on the linear and nonlinear foundations with constant and
variable properties can be evaluated analytically. A brief review on the litera-
ture indicates that there is no published research containing functionally graded
beam resting on the linear and nonlinear foundations.
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Pradhan and Murmu [1] presented thermo-mechanical vibration analy-
sis of functionally graded (FG) beams and functionally graded sandwich (FGSW)
beams. Both beams have been assumed to be resting on two various founda-
tions. Functionalities have been considered along the thickness direction. The
effect of different parameters such as temperature distribution, power-law index
and parameters of foundation has been considered on the vibration character-
istics of the beam. Ying, Lu and Chen [2] investigated on the bending and free
vibration of functionally graded beams resting on a Winkler–Pasternak elastic
foundation. They used two-dimensional theory of elasticity for simulation of
deformations. Exponentially function has been used for variation of material
properties along the thickness direction.

Banerjee et al [3] studied the nonlinear deformation of beam made of
isotropic material. They employed analytical and numerical methods for analy-
sis of beam. Analytical method was performed by Adomians Decomposition
Method (ADM) and shooting method was employed as a numerical method.
Kapuria et al [4] presented vibration analysis of a functionally graded beam.
They regarded the normal and shear stresses in that study.

A new beam theory has been developed by Sina, Navazi and Haddad-
pour [5] in order to analyze free vibration of functionally graded beams. The
beam properties are assumed to be varied through the thickness following a sim-
ple power law distribution in terms of volume fraction of material constituents.
Xiang and Yang [6] investigated on the free and forced vibrations of a laminated
functionally graded beam of variable thickness under thermal loads. The beam
was manufactured of a homogeneous substrate and two non-homogeneous func-
tionally graded layers. A two dimensional analysis has been used and therefore,
both the axial and rotary inertia of the beam were considered in that analy-
sis. Vibrations of axially moving flexible beams made of functionally graded
materials were studied by Piovan and R. Sampaio [7]. The used model was a
thin-walled beam with annular cross-section.

Li [8] presented a new approach for analyzing the static and dynamic
behaviour of functionally graded beams (FGB) with the rotary inertia and
shear deformation included. All material properties were arbitrary functions
along the beam thickness. A single fourth-order governing partial differential
equation was derived and all physical quantities were expressed in terms of the
solution of the resulting equation. As a case study, the Euler–Bernoulli and
Rayleigh beam theories have been derived by reducing the Timoshenko beam
theory. Benatta et al [9] used high-order flexural theories for short functionally
graded symmetric beams under three-point bending. The governing equations
were obtained using the principle of virtual work (PVW). Kadoli, Akhtar and
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Ganesan [10] presented static behaviour of functionally graded metal–ceramic
(FGM) beams under ambient temperature by using a higher order shear defor-
mation theory. The finite element form of static equilibrium equation for FGM
beam was presented using the principle of stationary potential energy. The
effect of power law exponent for various combination of metal–ceramic FGM
beam on defection and stresses were investigated. Yu, Yuan-Yuan and Chang
[11] developed a nonlinear mathematical model for large deformation analysis of
beams with discontinuity conditions and initial displacements. The differential
quadrature element method (DQEM) was applied to discretize the nonlinear
mathematical model. A rectangular and simply supported functionally graded
beam with thick thickness under transverse loading has been investigated by
Ben-Oumrane et al [12]. First and higher order shear deformation theories
have been used for analysis. They assumed that Young’s modulus vary contin-
uously throughout the thickness direction according to the volume fraction of
constituents.

The out-of-plane free vibration analysis of thin and thick functionally
graded circular curved beams on two-parameter elastic foundation was pre-
sented by Malekzadeh et al [13]. They used first-order shear deformation the-
ory (FSDT) in order to account the effects of shear deformation and rotary
inertia due to both torsion and flexural vibrations. The material properties
were assumed to be graded in radial direction of the beam curvature. Yousefi
and Rastgoo [14] analysed free vibration of functionally graded spatial curved
beams.

Based on the reported research, one can find that there is no study to
addresses the nonlinear analysis of a beam resting on the linear and nonlinear
foundations manufactured of materials with variable properties along the lon-
gitudinal direction. Furthermore, for solution of derived system of nonlinear
differential equation, a semi analytical approach has been presented.

2. Formulation for isotropic beam with constant thickness

2.1. Nonlinear foundation

This section presents the nonlinear differential equation of an isotropic
beam subjected to nonlinear foundation. From strength of material, we have
the relation between deflection and bending momentum as follows [3]:

(1) M = −EI
d2y

dx2
,

where M is bending momentum along the outward axis and y is deflection of
the beam. EI is rigidity modulus. Two times differentiating with respect to x
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Fig. 1. The schematic figure of a beam resting on the foundation

presents the load-deflection equation as follows:

(2) EI
d4y

dx4
= −q(x).

where, q is load per unit length of beam. The positive direction of q is coinci-
dent with the positive direction of deflection.

It was assumed that foundation has nonlinear behaviour of order two.
Therefore we have:

(3) q = k0 + k1y + k2y
2.

By substitution of above function into Eq. 2, we have:

(4) EI
d4y

dx4
= −(k0 + k1y + k2y

2).

Above nonlinear differential equation can be solved using the Adomians
Decomposition Method. This method decomposes differential equation to linear
and nonlinear operators and proposes solution using a successive procedure [3,
16].

(5)

EI
d4y

dx4
+ k1y + k2y

2 = −k0,

L(y) + R(y) + N(y) = g(x),

L :=
d4

dx4
, R :=

k1(. . . )

EI
, N :=

k2(. . . )
2

EI
, g :=

−k0

EI
,

where, L is largest linear operator, R is other linear operators, N is nonlinear
operator and g is a function that appears on the right side of the nonlinear
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equation. After defining the linear and nonlinear operators in nonlinear differ-
ential equations, the solution procedure can be presented by multiplication of
nonlinear equation in L−1, as follows:

(6)

L−1 :=

∫ ∫ ∫ ∫

(. . . )dxdxdxdx

yn+1 := −L−1(R(yn)) − L−1(N(yn)) n = 0, 1, 2, . . .

y0 := L−1(g(x)) + c0 + c1x + c2x
2 + c3x

3

= −

k0x
4

24EI
+ c0 + c1x + c2x

2 + c3x
3,

where, the defined constants ci, i = 1, . . . , 4 must be obtained by imposing the
boundary conditions on the zero’th order solution y0.

The longitudinal distribution of nonlinear deflection of an isotropic
beam with constant thickness in terms of different values of nonlinear index
(k2) is shown in Fig. 2. It can be concluded that the large values of nonlinear
loading parameter (k2) has an important effect on the responses of the beam.

Fig. 2. Longitudinal distribution of nonlinear deflection of an isotropic beam with
constant thickness in terms of different values of nonlinear index (k2)

The percentage of difference between linear and nonlinear results for
different values of nonlinear parameter can be presented in Fig. 3. The obtained
results indicate that the percentage of difference between linear and nonlinear
results increases with increasing the nonlinear index (k2).
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Fig. 3 The percentage of difference between linear and nonlinear results for different
values of nonlinear parameter

3. Formulation for FG beam with variable thickness

The nonlinear formulation for a functionally graded beam with variable
thickness and subjected to nonlinear foundation can be studied in the present
section.

3.1. Linear foundation

It is assumed that beam is graded along the longitudinal direction. For
the beam with mentioned condition, we have following relation:

(7)

M = −EI(x)
d2y

dx2

V =
dM

dx
= −

d

dx
(EI(x)

d2y

dx2
) → q(x) = −

d

dx
(

d

dx
(EI(x)

d2y

dx2
)) →

d2[EI(x)]

dx2

d2y

dx2
+ 2

d[EI(x)]

dx

d3y

dx2
+ EI(x)

d4y

dx4
= −q(x).

The solution can be decomposed into two linear and nonlinear responses
in terms of foundation to be linear or nonlinear, respectively. For a linear
foundation, we will have:

(8)

q(x) = k0 + k1y →

d2[EI(x)]

dx2

d2y

dx2
+ 2

d[EI(x)]

dx

d3y

dx2
+ EI(x)

d4y

dx4
+ k1y = −k0.



Nonlinear Analysis of a Functionally Graded Beam . . . 77

Adomians Decomposition Method can be applied for solution of above
fourth order linear differential equation. For simplification of derived differ-
ential equation, all terms can be expressed in familiar form by division with
EI(x), as follows:

(9)

d4y

dx4
+

(EI(x))′

EI(x)

d3y

dx3
+

2(EI(x))′′

EI(x)

d2y

dx2
+

k1

EI(x)
y(x) = −

k0

EI(x)
→

L :=
d4(. . . )

dx4
, R: =

(EI(x))′

EI(x)

d3(. . . )

dx3
+

2(EI(x))′′

EI(x)

d2(. . . )

dx2
+

k1

EI(x)
(. . . ),

g := −

k0

EI(x)
.

By defining the functionality of beam using an exponential function, we
will have defined operators in the following form:

(10)

EI(x) = ae−bx

L :=
d4(. . . )

dx4
, R := −b

d3(. . . )

dx3
+ 2b2 d2(. . . )

dx2
+

k1

a
ebx(. . . ), g := −

k0

a
ebx.

Using the Adomians Decomposition Method, for zero’th order solution,
we have:

(11)

y0 = L−1(g(x)) + c0 + c1x + c2x
2 + c3x

3 =
∫ ∫ ∫ ∫

(−
k0

a
ebx)dxdxdxdx + c0 + c1x + c2x

2 + c3x
3

y0 = −

k0

b4a
ebx + c0 + c1x + c2x

2 + c3x
3.

Higher order solutions can be obtained using successive approximation
method, as follows:

(12)

yn+1 := −L−1(R(yn)) − L−1(N(yn)) n = 0, 1, 2, . . .

yn+1 := −

k1

EI
L−1(yn) + cn0 + cn1x + cn2x

2 + cn3x
3

yn+1 := b

∫ ∫ ∫ ∫

(
d3(yn)

dx3
dxdxdxdx − 2b2

∫ ∫ ∫ ∫

(
d2(yn)

dx2
)dxdxdxdx

−

k1

a

∫ ∫ ∫ ∫

(ebxyn)dxdxdxdx + cn0 + cn1x + cn2x
2 + cn3x

3

yn+1 := b

∫

yndx − 2b2

∫ ∫

yndxdx

−

k1

a

∫ ∫ ∫ ∫

(ebxyn)dxdxdxdx + cn0 + cn1x + cn2x
2 + cn3x

3
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where, cn0, cn1, cn2, cn3 are four constants of integration that appear in derived
solution in n’th step. These constants can be obtained by employing homoge-
nized boundary conditions. Actual boundary conditions for a simply supported
beam are:

(13) x = 0, L →

{

y = 0
M = 0

Linear distribution of lateral deflection in terms of different values of
non homogenous index of the problem is shown in Fig. 4. The obtained re-
sults indicate that the lateral deflection increases with increasing values of non
homogenous index (b).

Fig. 4. Longitudinal distribution of linear lateral deflection in terms of different
values of non homogenous index (b)

3.2. Nonlinear foundation

The effect of nonlinear foundation can be considered in this section. A
cubic distribution has been considered for nonlinear distribution of elastic foun-
dation. By employing this nonlinear foundation, we have nonlinear differential
equation as follows:

(14)

q = (k0 + k1y + k2y
2)

d2[EI(x)]

dx2

d2y

dx2
+ 2

d[EI(x)]

dx

d3y

dx2
+ EI(x)

d4y

dx4
+ k1y + k2y

2 = −k0.
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The detail of Adomians Decomposition Method can be presented as
follows:

(15)

d4y

dx4
+

(EI(x))′′

EI(x)

d3y

dx3
+

2(EI(x))′

EI(x)

d2y

dx2
+

k1

EI(x)
y(x) +

k2

EI(x)
y(x)2

= −

k0

EI(x)
→

L :=
d4(. . . )

dx4
, R :=

(EI(x))′′

EI(x)

d3(. . . )

dx3
+

2(EI(x))′

EI(x)

d2(. . . )

dx2
+

k1

EI(x)
(. . . )

N :=
k2

EI(x)
(. . . )2, g := −

k0

EI(x)
.

From the above decomposition of nonlinear differential equation to basic
linear and nonlinear operators and employing the mentioned method, we will
have:

EI(x) = ae−bx

L :=
d4(. . . )

dx4
, R := b2 d3(. . . )

dx3
− 2b

d2(. . . )

dx2
+

kebx

a
(. . . ),

g := −

k0

ae−bx
, N :=

k2e
−x

a
(. . . )2,

where, y0 is zero’th order solution which can be obtained from L−1(g).
Longitudinal distribution of nonlinear lateral deflection is presented in

Fig. 5. The effect of employed nonlinear analysis can be studied by comparison
between linear and nonlinear responses. The percentage of difference between
linear and nonlinear responses for different values of non homogenous index (b)
is presented in Fig. 6.

The presented results in Fig. 6 indicate that the percentage of difference
between linear and nonlinear responses increases with increasing the values of
non homogenous index (b). This figure shows that the non homogenous index
(b) has important effect on the difference of the linear and nonlinear responses.

4. Conclusion

The comprehensive analysis of different homogenous and non homoge-
nous beam loaded under linear and nonlinear foundations have been performed
in this paper. Adomians Decomposition Method has been employed for solu-
tion of obtained linear and nonlinear differential equations. The effect of non
homogenous index and loading parameter has been considered on the linear
and nonlinear system responses.
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Fig. 5. Longitudinal distribution of nonlinear lateral deflection

Fig. 6. The percentage of difference between linear and nonlinear responses

Investigation on the obtained results indicates that increasing the non
homogenous index, increases both linear and nonlinear deflections. Further-
more, it can be concluded that increasing the non homogenous index, increases
the percentage of difference between linear and nonlinear responses.
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