Print this page

Theme 2

ANALYTICAL AND NUMERICAL MODELLING IN SOLID MECHANICS

 

Aim of the project: development of adequate mathematical (analytical and numerical) models, based on experimental and numerical analysis and simulation of wide circle important technical and technological, coupled, contact and impact processes and phenomena for one and multiphase media and structures of classical and new materials; development and analysis of appropriate computational methods and algorithms, based on the finite and boundary element, finite difference and Monte Carlo methods; formulation and solving of new problems in solid mechanics with practical application.

Current problems: characterization of thin coatings and nanostructured materials by nanoindentation - modelling and computational-experimental identification of the material parameters; computer simulation of carbon nanotubes materials behaviour; numerical modelling of experiments for slowly dissolving drug release from micro and nanocarriers; innovative materials solutions for transport, energy and bio-medical sectors; hierarchical modelling of mineralized exoskeleton tissues of arthropoda; numerical simulation of mechanical processes in MEMS; development of Monte Carlo - ray tracing methods and physical experiments of light scattering by particulate matter and its applications to characterization and identification of microparticles; modelling of seismic waves propagation in inhomogeneous, porous media and of coupled processes in soils, grid model based simulation of desorption, fracture evaluation of magnetoelectroelastic composite with cracks; analysis of the interphase delamination of thin dynamically loaded multilayered structures and application to wind propellers for estimation of their reliability and determination of safety working zone; analysis of the effects of a localized blast on the energy absorption mechanism of foam materials used in protective structures, influence of the material properties on the critical load causing damage; coupled contact problems for deformable bodies with internal state variables - variational and numerical analysis, numerical methods and algorithms.

 

Researchers: Assoc. Prof. T. Angelov (coordinator), Assoc. Prof. R. Blagoeva, Assist. Prof. S. Cherneva, Assoc. Prof. V. Valeva, Assoc. Prof. M. Datcheva, Assoc. Prof. P. Dineva, Assoc. Prof. R. Iankov, Assoc. Prof. J. Ivanova, Prof. D.Sc. J. Ivanova, Prof. D.Sc. V. Kavardjikov, Prof. D. Karagiozova, Assoc. Prof. E. Manoach, Assoc. Prof. M. Mikrenska, Assoc. Prof. A. Nedev, Assoc. Prof. N. Nikolov, Assoc. Prof. Sv. Nikolov, Assist. Prof. G. Nikolova, Assoc. Prof. L. Parashkevova, Assoc. Prof. D. Pashkuleva, Assoc. Prof. N. Pesheva, Assoc. Prof. A. Popov, Assoc. Prof. I. Rusev, Assoc. Prof. St. Stefanov, Assoc. Prof. A. Yanakieva, Prof. G. Stoilov, Assist. Prof. A. Shulev, Assist. Prof. K. Shterev.

Collaborators: Corr. M. A. Baltov (IMech-BAS, assoc. m.), Assoc, Prof. Sl. Slavchev (IMech-BAS, assoc. m.), Ph.D. student G. Chalukova, Prof. D.Sc. Ts. Rangelov (IMI-BAS), Assoc. Prof. D.Sc. E. Stoimenova (IMI-BAS), Prof. D.Sc. D. Stoichev (IPC-BAS), Prof. K. Kazakov (VSU), Dr. M. Jorganov (TU), Assist. Prof. I. Stefanov (TU), Prof. T. Schanz (RUB, GE), Dr. L. Roechter (RUB, GE), Prof. S. Diebels (Saarland University, GE), Prof. F. Wuttke (Bauhaus University, GE), Prof. G. Manolis (Aristotle University, GR), Prof. Dr. J.-B. Renard (LPC2E-CNRS, Orleans, FR), Dr. M. Francis (LPC2E-CNRS, Orleans, FR), Prof. Dr. G.N. Nurick (UCT, ZA), Dr. G.S. Langdon (UCT, ZA)

 


Modified date:11-05-2012